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Parameter Estimation in Latent Variable Models

Expectation maximization: problems – computational intractability,
often no closed form solution of updates, local minima, uncertainty of
solutions.

General method of moments: problems – computational difficulty in
solving multivariate polynomials.

However, commonly used latent variable models have rich structure in
their second order (matrix) and third order (tensor) moments.
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Spectral Learning Techniques

Methods of (Symmetric) Tensor Decomposition – the most general
technique.

Power method.
Simultaneous diagonalization of matrices obtained from tensor.

Subspace methods based on observable representation.
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A Simple Example

Toss a biased coin and based on the outcome, toss one of the two
other biased coins and report the result – a mixture model with two
components.

Let’s try method of moments on the independent observations.

E[X ] = π1µ1 + π2µ2, where, π1 + π2 = 1.

E[X1X2] = E[X ]2, E[X1X2X3] = E[X ]3, · · · .
Higher order moments do not have any additional information.

Can we leverage the structure of the problem in a more intelligent
way?
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A Simple Example Continued

E[X ] = π1µ1 + π2µ2.

E[X1X2|Z1 = Z2] = π1µ
2
1 + π2µ

2
2.

E[X1X2X3|Z1 = Z2 = Z3] = π1µ
3
1 + π2µ

3
2.

Lesson learnt: observations with related latent structure are useful for
identifying parameters.

Additionally, it is sufficient to know that the latent variables are
drawn from the same distribution – they need not be the same.
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Structure of Moments in pLSI

k : number of mixture components, d : size of vocabulary, ` ≥ 3 :
minimum number of words per document.

Let w = (wi )
k
i=1 denote the probability vector for topic selection.

{µi}ki=1 be the topic-word distributions for different topics.

One-hot encoding of the words in documents.

Statistics based on words co-occurring in a given document:

E[x1 ⊗ x2] = M2 =
k∑

i=1

wi (µi ⊗ µi ).

E[x1 ⊗ x2 ⊗ x3] = M3 =
k∑

i=1

wi (µi ⊗ µi ⊗ µi ).

Since µi’s are not orthogonal, eigen decomposition of M2 is not
sufficient to recover wi and µi.
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Rank of a Tensor

The rank of a pth order tensor A ∈ ⊗pRn is the minimum number k

such that A =
k∑

j=1

u1j ⊗ u2j ⊗ · · · ⊗ upj for uij ∈ Rn ∀i , j .

For p = 2, the above decomposition is the rank−k approximation of
the matrix A, a.k.a. SVD.

For symmetric tensors the decomposition can be written as:

A =
k∑

j=1

⊗puj for uj ∈ Rn ∀j .

Facts:

Rank of a tensor might not be finite!
There might not exist orthogonal eigen vectors!
Removal of the best rank-1 approximation might increase the rank of
the residual tensor!
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Eigen Decomposition of Symmetric Tensors

Let M(u,u) =
∑

1≤i ,j≤d
Mij(e

†
i u)(e†j u) = u†Mu.

Also, let T (u,u,u) =
∑

1≤i ,j ,`≤d
Tij`(e

†
i u)(e†j u)(e†`u).

Fixed Point Characterization of Eigen Vector:

Matrix: M(I,u) = Mu = λu.
Tensor: T (I,u,u) = λu.

Variational Characterization of Eigen Vector:

Matrix: supu M(u,u) s.t.||u||2 = 1 ≡ supu u
TMu s.t.||u||2 = 1.

Tensor: supu T (u,u,u) s.t.||u||2 = 1.

Ayan Acharya, Rajiv Khanna (UT Austin) Spectral Learning in Latent Variable Models March 4, 2013 8 / 42



Further Problems with Symmetric Tensor

Let T =
k∑

i=1

λi (vi ⊗ vi ⊗ vi ) with vi ’s being orthogonal and λi > 0∀i .

For any S ⊆ {1, 2, · · · , k} and for any u =
∑
i∈S

vi
λi

, T (I,u,u) = u.

There exists lot more eigen vectors than what the low rank structure
suggests.

Fortunately, there are only k “robust” eigen vectors.
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Characterization of Robust Eigen Vectors

Power method update for eigen decomposition: θ̄ 7→ M(I,θ̄)

||M(I,θ̄)|| .

A unit vector u is a “robust eigenvector” of T if there exists an ε > 0
such that ∀θ ∈ {u′ : ||u′ − u|| ≤ ε}, repeated iteration of the map

θ̄ 7→ T (I,θ̄,θ̄)

||T (I,θ̄,θ̄)|| , converges to u starting from θ .

Let T have an orthogonal decomposition. Then,
1 The set of θ which do not converge to some vi under repeated tensor

power method iteration has measure zero.
2 The set of robust eigenvectors of T is equal to {vi}ki=1.

Implication: start from somewhere and the power iteration takes to
one of the robust eigen vectors!
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Properties of Robust Eigen Vectors

Let T have an orthogonal decomposition, and consider the
optimization problem supu T (u,u,u) s.t.||u|| = 1.

1 The stationary points are eigenvectors of T .
2 A stationary point u is an isolated local maximizer if and only if u = vi

for some i ∈ {1, 2, .. · · · , k}.
Stationary points other than robust eigen vectors can be discarded
from the test of T (I, I,u).
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Reduction to Orthogonally Decomposable Tensor

Non-degeneracy condition: the vectors {µi}ki=1 are linearly
independent, and the scalars wi > 0∀i are strictly positive.

Basic idea: use SVD of M2 to construct an orthonormal basis for the
span of {µi}ki=1, and in that basis some transformation of M3 has a
unique orthogonal decomposition whose eigenvectors determine
{µi}ki=1.

Let W ∈ Rd×k be such that M2(W ,W ) = W †M2W = I.

In particular, we can take W = UD−1/2.

M2(W ,W ) =
k∑

i=1

W †(
√
wiµi )(

√
wiµi )

†W =
k∑

i=1

µ̃i µ̃
†
i = I.

µ̃i ’s are orthogonal where µ̃i =
√
wiW

†µi .
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Eigen Decomposition of M̃3

Define M̃3 = M3(W ,W ,W ) =
k∑

i=1

wi (W
†µi )

⊗3 =
k∑

i=1

µ̃⊗3
i√
wi

.

The set of robust eigenvectors of M̃3 is equal to {µ̃i}ki=1.

The eigenvalue corresponding to the robust eigenvector µ̃i of M̃3 is
equal to 1/

√
w i∀i .

If B ∈ Rd×k is the Moore-Penrose pseudo-inverse of W †, and (v, λ) is
a robust eigenvector/eigenvalue pair of M̃3, then λBv = µi for some
i ∈ {1, 2, · · · , k}.
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Multi-view Models

` ≥ 3 different views – x1, x2, · · · , x` conditionally independent given
z.

Similar to pLSI – only the conditional distributions are different.

E[xt ⊗ xt′ ] =
k∑

i=1

wi (µti ⊗ µt′i ) ∀t, t ′.

E[x1 ⊗ x2 ⊗ x3] =
k∑

i=1

wi (µ1i ⊗ µ2i ⊗ µ3i ).

x̃1 = E[x3 ⊗ x2]E[x3 ⊗ x2]−1x1, x̃2 = E[x3 ⊗ x1]E[x2 ⊗ x1]−1x2.

E[x̃1 ⊗ x̃2] = M2 =
k∑

i=1

wi (µ3i ⊗ µ3i ).

E[x̃1 ⊗ x̃2 ⊗ x̃3] = M3 =
k∑

i=1

wi (µ3i ⊗ µ3i ⊗ µ3i ).
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Comparison with Other Methods

Dasgupta and Schulman, 2007; Vempala and Wang, 2002; Chaudhuri
and Rao, 2008; Brubaker and Vempala, 2008.

Recovers the parameters provided that the distance between means is
sufficiently large (roughly either dc or kc times the standard deviation
of the Gaussians, for some c > 0).

Techniques have been developed for learning GMM without any
separation condition (Kalai et al., 2010; Belkin and Sinha, 2010;
Moitra and Valiant, 2010).

The computational and sample complexities of these methods grow
exponentially with k – modern implementations of traditional method
of moments.
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Hidden Markov Model

Discrete state, discrete observation HMM.

Hidden state-observation pair {ht , xt}t .
Number of hidden states: m and number of different outcomes of the
the observations n with m ≤ n.

Parameters to be learnt:

Transition matrix T of dimension m ×m .
Observation probability matrix O of dimension n ×m.
Initial state distribution π – a vector of length m.
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Hidden Markov Model

Courtesy: Dr. Ray Mooney.
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Observable Operator View of HMM

For x = {1, 2, · · · , n} define Ax = Tdiag(Ox1 , · · · ,Oxm). For any

t : Pr[x1, · · · , xt ] = 1†mAxt · · ·Ax1π.

Assumption 1: π > 0, and O and T are rank m.

[P1]i = Pr[x1 = i ], [P2,1]ij = Pr[x2 = i , x1 = j ],
[P3,x ,1]ij = Pr[x3 = i , x2 = x , x1 = j ] ∀x ∈ {1, 2, · · · , n},
Assumption 2: U†O is invertible for some U ∈ Rn×m.

Assume π > 0 and that O and T have column rank m. Then
rank(P2,1) = m. Moreover, if U is the matrix of left singular vectors
of P2,1 corresponding to non-zero singular values, then
range(U) =range(O), so U obeys assumption 2.

With the above two assumptions,

b1 = U†P1 = (U†O)π.

b†∞ = (P†2,1U)††P1 = 1†m(U†O)−1.

Bx = (U†P3,x,1)(U†P2,1)†† = (U†O)Ax(U†O)−1 ∀x.
Pr[x1:t ] = b†∞Bxt:1b1 ∀t, x.
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Spectral Learning of HMM
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Spectral Learning of HMM
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Simultaneous Diagonalization for Tensor Decomposition

Let V = [µ1,µ2, · · · ,µk ], W = diag(w1,w2, · · · ,wk), and

D(η) = diag(µ†1η,µ
†
2η, · · · ,µ

†
kη).

M2 = VWV †, M3(I, I,η) = VWD(η)V †.

Find a matrix X such that X †M2X and X †M3(I, I,η)X (for all η) are
diagonal.
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Algorithm I for Simultaneous Diagonalization

Get M̃2 and M̃3 from data.

Let Ã and B̃ be the top−k left and right singular vectors of M̃2.

Define C (η) = (A†M3(I, I,η)B)(A†M3(I, I,η)B)−1.

Also C (η) = (A†V )diag(V †η)(A†V )−1.

Get empirical estimate of C (η).

It can be shown that A†V is invertible – eigen decomposition of C (η)
can be performed to recover A†V and hence V .

Since M2 = VWV †, W can be recovered from a knowledge of V .

Little bit more work needed for multi-view models.

Algorithm II – two SVDs for LDA.

Ayan Acharya, Rajiv Khanna (UT Austin) Spectral Learning in Latent Variable Models March 4, 2013 22 / 42



On the choice of η

Components of η have to be distinct.

Can be taken to be a unit basis vector if there is some prior
information about the distinct probabilities of a word in topics.

Else, η can be chosen as η = Ãθ where θ ∈ Rk is a unit vector
sampled randomly from a sphere in dimension k.
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Mixed Membership Stochastic Block Model
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Fixed Membership Stochastic Block Model
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Graph Moments

Adjacency matrix: G , submatrix going from X to A: GX ,A,
community connectivity matrix P.

F = π†P† ∈ Rn×k , FA = π†AP
† denoting the submatrix of F

corresponding to nodes in A.

TX→{A,B,C} = 1
|X |

∑
i∈X

[G †i ,A ⊗ G †i ,B ⊗ G †i ,C ].

E[G †X ,A|πX ,πA] = FAπX .

E[TX→{A,B,C}|πA,πB ,πC ] =
∑
i∈[k]

α̂i (FA)i ⊗ (FB)i ⊗ (FC )i .
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Simultaneous Diagonalization

We have looked at several tensor decomposition methods

Is there a subclass in which simpler special case formulations exist?
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Setup

Sequence of exchangeable RVs: x1, x2, . . . , xn ∈ Rd

Latent variable vector: h ∈ Rk

Topic matrix: O ∈ Rdxk

Structure :
E(xv |h) = Oh

Goal: Recover O after observing xv

Assumption 0: Some info about distribution of h

Assumption 1: d ≥ k

Assumption 2 : O is full column-rank
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Method for Independent (skewed) factor model

Product distribution: Each hi independent from the rest

Variance of hi : σ
2
i = E[(hi − E(hi ))2]

Higher moment: µi ,l = E[(hi − E(hi ))l ]

As before, define moments of xv :

µ := E(x1)
Pairs := E(x1 − µ)(x2 − µ)†

Triples := E[(x1 − µ)⊗ (x2 − µ)⊗ (x3 − µ)]
Triples(η) :=E[(x1 − µ)(x2 − µ)†〈(x3 − µ), η〉]
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Identifying structure

Easy to show relationship between O and and the moments of x
based on E(xv |h) = Oh

Pairs = O diag(σ2
1, σ

2
2, . . . , σ

2
k) O†

Triples(η) = Odiag(O†η) diag(µ1,3, µ2,3, . . . , µk,3) O†

Triples structure hints at a possible SVD. Need an “appropriate” η,
and O not orthogonal

2-svd helps in obtaining it.

Operate in matrices - tensor decompositions bypassed.
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SVD 1 – Whiten Pairs

Triples(η) = Odiag(O†η) diag(µ1,3, µ2,3, . . . , µk,3) O†.

Need η that is not in left null space of O.

Identifiability issues for any η.

Assumptions 1 and 2 come into play.

Pairs is d × d , but has rank k .
∃W s.t. W †PairsW = Ik x k

Set η = W θ, definitely not in left null space of O.

Claim: For a randomly drawn θ ∈ Sk−1, an SVD for
W †Triples(W θ)W recovers W †O as singular vectors.
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SVD 2

Can show W †Triples(W θ)W = Mdiag(M†θ)diag(γ1, γ2, . . . , γk)M†

γi is skewness

M = W †O

M is orthogonal =⇒ SVD struct.

θ is randomly chosen, M†θ is a rotation

With probability 1, singular values are unique i.e. singular vectors are
identifiable (upto sign and permutation)

For a random θ, only the singular values change!
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Algorithm - Independent Skewed Factors
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Identifiability of O

Can rescale h and columns of O to get the same model

Canonicalize : Set σi = 1

Re-running with different θ recovers upto permutation and sign.

h being product crucial above, in general we only recover range of O.

O recovered above identifiable upto sign and permutation of columns
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Comments

M†θ can have a 0 entry, corresponding O∗j not recovered.

Rerun.

What if h is not skewed (third moment is 0).

Use fourth moments(kurtosis). Slightly more work, algorithm and
proofs similar.

Possible Extension Are there other such classes of models amenable
to simpler special case algorithms?

Can be “embedded” into more complicated models. e.g. LDA,
multiview, altered mixture models.

Moments of x built empirically.

For LDA : (properly permuted) With prob 1− δ, for N ≥ O(ln(δ))

||O∗j − Ô∗j || ≤ O(
ln(1/δ)

N
)

1
2
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Example: Coding LDA

Each xv is the v th word in a document

d is vocabulary size

xv = ej if xv is the j th word from the vocabulary.

h ∈ ∆k−1 . Distributed Dirichlet(α).

O∗j = word distribution of j th topic.

Pr([xv ]j = 1|h) = [Oh]j =⇒ E (xv |h) = Oh

Parameter α0 =
∑

k αk supplied externally
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LDA

Define moments

Pairsα0 := E(x1x
†
2 )− α0

α0+1µµ
†

Triplesα0
(η) :=

E(x1x
†
2 〈η, x3〉)− α0

α0+2

(
E[x1x

†
2 ]ηµ† + µη†E[x1x

†
2 ] + 〈η, µ〉E[x1x

†
2 ]
)

+

2α2
0

(α0+1)(α0+2) 〈η, µ〉µµ
†

Structure

Pairsα0 = 1
(α0+1)α0

Odiag(α)O†

Triplesα0
(η) = 1

(α0+1)(α0+2)α0Odiag(O†η)diag(α)O†
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Algorithm for LDA
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Multiview extension

O is not the same for every v

E[xv |h] = Ovh

Define moments. For v ∈ 1, 2, 3,

Pairsv ,v ′ := E[(xv − µ)(xv ′ − µ)†]
Triples132(η) := E[(x1 − µ)(x2 − µ)†〈η, x3 − µ〉]

Structure - For v ∈ 1, 2, 3,

Pairsv ,v ′ = Ovdiag(σ2
1 , σ

2
2 , . . . , σ

2
k)O†v ′

Triples132(η) = O1diag(O†3 )diag(µ1,3, . . . , µk,3)O†2

Generate a single view from the three views and use the first
algorithm.
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Multiview Algorithm
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New Research Direction

Online implementation of tensor decomposition – application – large
scale learning of topic models.

Constrained tensor decomposition based on auxiliary/side information
– application – supervised topic models.

More efficient implementation (optimization) of tensor decomposition.
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