# Recent Works in Multitask Learning

Ayan Acharya, Anish Mittal

**UT** Austin

Oct 25, 2011

# Multiple Tasks Occur Naturally

#### Mitchell's Calendar Apprentice (CAP)

- Time-of-day (9:00am, 9:30am, ...)
- Day-of-week (M, T, W, ...)
- Duration (30min, 60min, ...)
- Location (Tom's office, Dean's office, 5409, ...)

1

<sup>&</sup>lt;sup>1</sup>Credits: Rich Caruana, Computer Science Department, Cornell University

## MTL for Bayes Net Structure Learning



- Bayes Nets for these three species overlap significantly
- Learn structures from data for each species separately? No.
- Learn one structure for all three species? No.
- Bias learning to favor shared structure while allowing some differences? Yes – makes most of limited data.

### 1 Task vs. 2 Tasks vs. 4 Tasks



# Using Future to Predict Present



- medical domains
- autonomous vehicles and robots
- time series
- stock market
- economic forecasting
- weather prediction
- spatial series
- many more

4

<sup>&</sup>lt;sup>4</sup>Credits: Rich Caruana, Computer Science Department, Cornell University

## Helpful for decomposable Tasks

## **DireOutcome** = ICU v Complication v Death





<sup>&</sup>lt;sup>5</sup>Credits: Rich Caruana, Computer Science Department, Cornell University

### Parallel vs. Serial Transfer

- Where possible, use parallel transfer
- All info about a task is in the training set, not necessarily a model trained on that train set
- Information useful to other tasks can be lost training one task at a time
- Tasks often benefit each other mutually
- When serial is necessary, implement via parallel task rehearsal
- Storing all experience not always feasible

6

<sup>&</sup>lt;sup>6</sup>Credits: Rich Caruana, Computer Science Department, Cornell University

# Papers Covered

- Transfer Learning for Collective Link Prediction in Multiple Heterogeneous Domains. B. Cao, N. Liu, Q. Yang.
- Multiple Domain User Personalization. Y.Low, D. Aggarwal, A. Smola.
- Olustered Multi-Task Learning: A Convex Formulation. Laurent Jacob, Francis Bach, Jean-Philippe Vert.

#### Other Related Papers:

- Localized Factor Models for Multi-Context Recommendation. D. Agarwal, B-C Chen, B. Long.
- Flexible Latent Variable Models for Multitask Learning. J. Zhang, Z. Ghahramani, Y.Yang.
- One-Shot Learning with a Hierarchical Nonparametric Bayesian Model. R. Salakhutdinov, J. Tenenbaum, A. Torralba.

Other Potential Approach: Learning Structural SVMs with Latent Variables. C-N. J. Yu, T. Joachims.

Clustered Multi-Task Learning: a Convex Formulation L. Jacob, F. Bach and J-P. Vert

#### Motivation

- Can sharing information across related tasks help?
- Sharing achieved using apriori information about weight vectors associated with each task
- Similar tasks should have similar weight vectors
- Which tasks are similar can be learnt together with weights using convex optimization formulation

#### Motivation

 $I^p$  norms used to impose various sparsity patterns in data while learning weights

Can regularization function be designed suited to the problem assuming a prior knowledge?

#### Motivation

Objective = 
$$L(W) + \lambda \Omega(W)$$

Empirical risk of set of linear classifiers given in matrix W

$$L(W) = \frac{\sum_{t=1}^{N} \sum_{i \in I(t)} I(w_t^T x_i, y_i)}{n}$$

Regularizer  $\Omega(W)$  learnt from prior knowledge to constrain sharing of info across tasks

 $\lambda$  controls the relative weighting of loss function and regularizer

## Regularizer

Assuming that we know how tasks are partitioned in to clusters:  $\Omega(W)$  consists of

- Global Penality: how large are the weight vectors: tr(WUW<sup>T</sup>)
- Between Cluster Variance: how close clusters are to each other: tr(W(M-U)W<sup>T</sup>)
- With in Cluster Variance: how compact are clusters:  $tr(W(I-M)W^T)$

U is a mean matrix with all entries equal to inverse of number of tasks M is normalized adjacency matrix with both rows and columns summing to 1

$$\Omega(W) = \epsilon_{M} \Omega_{mean}(W) + \epsilon_{B} \Omega_{between}(W) + \epsilon_{W} \Omega_{within}(W)$$



# Objective

Objective = 
$$L(W) + \lambda \operatorname{tr}(W\Sigma^{-1}W^T)$$

where  $\Sigma^{-1} = \epsilon_M U + \epsilon_B (M-U) + \epsilon_W (I-M)$ 

 $\Sigma^{-1}$  is a quadratic penality depending on the normalized adjacency matrix  $\boldsymbol{M}$ 

 $\epsilon_{\it M}$ ,  $\epsilon_{\it B}$  ,  $\epsilon_{\it W}$  can balance the importance of components of the penality

## Effect of $\epsilon_M$ , $\epsilon_B$ , $\epsilon_W$

- $\epsilon_M = \epsilon_B = \epsilon_W$ Doesn't put any constraint on relationship between tasks
- $\epsilon_B = \epsilon_W > \epsilon_M$ Global similarity between tasks is enforced in additional to constraint on mean. Also, structure in clusters play no role
- $\epsilon_W > \epsilon_B = \epsilon_M$ Penalise the norm and their variance
- Optimum  $\epsilon_W > \epsilon_B > \epsilon_M$  Penalize more with in cluster variance than between cluster variance promoting compact clusters

### Convex relaxation

- $\Sigma^{-1}$  is dependent on normalized adjacency matrix M whose values are quantized so as to make sum of rows and columns to be 1
- Values assume discrete values by construction making the problem non-convex, hence necessary to relax the assumption
- After convex relaxation, the set  $S_c$  for  $\Sigma_c$  can be expressed as  $S_c = \{\Sigma_c \epsilon S_+^m : \alpha I \leq \Sigma_c \leq \beta I, tr \Sigma_c = \gamma\}$   $\alpha = \epsilon_W^{-1}, \beta = \epsilon_B^{-1} \text{ and } \gamma = (m r + 1)\epsilon_W^{-1} + (r 1)\epsilon_B^{-1}$

## Reinterpretation in terms of norms

Depending on the constraints on set  $S_c$ , different norms on W can be obtained and all multi- task formulations can be cast in this framework

Transfer Learning for Collective Link Prediction in Multiple Heterogeneous Domains.

B. Cao, N. Liu, Q. Yang.



# Probabilistic PCA (Tipping & Bishop, 1999)



- $z \sim \mathcal{N}(0, I)$ .  $(z \in \mathbb{R}^M)$
- $x \sim \mathcal{N}(Wz + \mu, \sigma^2 I)$   $(x \in \mathbb{R}^D \text{ and } W \in \mathbb{R}^{D \times M})$
- $p(x|\mu, W, \sigma) = \mathcal{N}(\mu, C)$  where  $C = WW^{\dagger} + \sigma^2 I$ .

ML estimates of model parameters are:

- $\mu_{ML} = \bar{x}$ ,  $\sigma_{ML}^2 = \frac{1}{D-M} \sum_{i=M+1}^{D} \lambda_i$ .
- $W_{ML} = U_M (L_M \sigma^2 I)^{1/2} R$ , where,  $U_M \in \mathbb{R}^{D \times M}$  and  $L_M \in \mathbb{R}^{M \times M}$  (diagonal matrix) catch  $W_{ML}$  spans the principal subspace of the data.

## Dual Probabilistic PCA (Lawrence, 2005)

Can we marginalize out parameters and maximize the likelihood over hidden variables?

• 
$$W \sim \prod_{j=1}^{D} \mathcal{N}(w_j|0, I)$$
.  $(W \in \mathbb{R}^{D \times M})$ 

- $z \sim \mathcal{N}(0, I)$ .  $(z \in \mathbb{R}^M)$
- $x \sim \mathcal{N}(Wz + \mu, \sigma^2 I) (x \in \mathbb{R}^D)$

• 
$$p(X|\mu, Z, \sigma) = \prod_{j=1}^{D} \mathcal{N}(x_{:,j}|\mu_j, C)$$
 where  $C = ZZ^{\dagger} + \sigma^2 I$ .

Turns out that DPPCA also has similar interpretation as PCA when we take MAP estimates of Z. Marginalizing over both W and Z leads to Bayesian PCA (Bishop, 1999) – analytically intractable.



### **Notations**

- $\{X^{(t)}\}_{t=1}^T$ : Collection of matrices across different tasks subset of which are the observed values.  $X^{(t)} \in \mathbb{R}^{m \times n}$ .
- Y: X = f(Y), where f is some suitable transformation (link function) over Y depends on distribution of observed X's.  $Y \in \mathbb{R}^{m \times n}$ .
- $U \in \mathbb{R}^{m \times d}$  is the entity latent factor matrix of first type (users).
- $V \in \mathbb{R}^{n \times d}$  is the entity latent factor matrix of second type (items).
- Objective: predicting missing values in  $\{X^{(t)}\}$ .

### Non-linear Matrix Factorization

- PMF:  $p(Y|U, V, \sigma^2) = \mathcal{N}(UV^{\dagger} + E)$  where,  $E \sim \mathcal{N}(0, \sigma^2)$ ,  $U \sim \mathcal{N}(0, \beta_u^{-1})$ , and  $V \sim \mathcal{N}(0, \beta_v^{-1})$ .
- Optimize over U, V and all model parameters how about marginalizing over either U or V?
- $p(Y|V, \sigma^2, \beta_u) = \prod_{i=1}^m \mathcal{N}(y_{i,:}|0, \beta_u^{-1}VV^{\dagger} + \sigma^2I_n) PPGA.$
- $p(Y|U, \sigma^2, \beta_V) = \prod_{i=1}^n \mathcal{N}(y_{:,i}|0, \beta_V^{-1}UU^{\dagger} + \sigma^2I_m)$  Dual PPCA.
- Inner product allows kernelization non-linear matrix factorization (Lawrence & Utrasun, 2009) –

$$p(Y|V,\sigma^2,\beta_u)=\prod_{i=1}^m \mathcal{N}(y_{i,:}|0,K+\sigma^2I_n).$$



## Negatively Skewed Distribution and Link Function



- Skewness:  $\mathbb{E}\left[\frac{X-\mu}{\sigma}\right]^3$ .
- $g(x) = f^{-1}(x) = x^{1+\alpha}$  where  $\alpha \ge 0$ .
- $p(X|V,\sigma^2,\beta_u) = \prod_{i=1}^N \mathcal{N}(g(x_{i,:})|0,K+\sigma^2I_N)|g'(x_{i,:})|.$
- Connections established so far: PMF  $\to$  PPCA (and DPPCA)  $\to$  Non-linear MF  $\to$  Non-linear MF with link function.



# Collective Link Modeling

- Multiple "related" tasks where one entity type is common (U) and there are multiple matrices  $\{V^t\}$  of other entity type.
- Naïve option: model each task independently –

$$p(\{Y^{(t)}\}|V,\sigma^2,\beta_u) = \prod_{t=1}^T \prod_{i=1}^{m^{(t)}} \mathcal{N}(g(x_{i,:}^{(t)})|0,K^{(t)}+\sigma^2I_n).$$

Smarter option: joint modeling of the tasks –

$$p(\{Y^{(t)}\}|V,\sigma^2,\beta_u) = \prod_{i=1} \mathcal{N}(g(X_{i,:})|0,C), \text{ where } C = T \otimes K + \sigma^2 I.$$

- Task specific link function:  $g^{(t)}(x) = c^{(t)}x^{1+\alpha^{(t)}} + b^{(t)}$ , where  $c^{(t)}, \alpha^{(t)} > 0$ .



# Collective Link Modeling Continued

- $\mathbb{E}(y) = T_{t,t} \sum_{x_j \in X^{(t)}} w_j k(v, v_j) + \sum_s T_{s,t} \sum_{x_i \in X^{(s)}} w_j k(v, v_i)$  where  $w_i = (C_{\mathbb{O}}^{-1} k_y)_i$ .
- Parameters (T, kernel parameters, { $c^{(t)}, b^{(t)}, \alpha^{(t)}$ } and V) are learnt using stochastic gradient descent.
- Steps are expensive as each of them involves matrix inverse  $(C_{\bigcirc}^{-1})$ .

# **Experiments and Results**

Three datasets – MovieLens, Book-Crossing, Douban.

| MovieLens     | I-GP   | M-GP   | CMF    | CLP-GP |
|---------------|--------|--------|--------|--------|
| -Link         | 1.4827 | 0.6569 | 0.7120 | 0.6440 |
| +Link         | 1.3487 | 0.6353 | -      | 0.6385 |
| Book-Crossing | I-GP   | M-GP   | CMF    | CLP-GP |
| -Link         | 0.9385 | 0.7018 | 0.8054 | 0.6547 |
| +Link         | 0.9317 | 0.6488 | -      | 0.6014 |
| Douban        | I-GP   | M-GP   | CMF    | CLP-GP |
| -Link         | 0.7789 | 0.7772 | 0.9917 | 0.7446 |
| +Link         | 0.7726 | 0.7625 | -      | 0.7418 |

MAE for i) Independent Link Prediction using NMF via GP (I-GP), ii) Joint Link Prediction using multi-relational GP (G-MP), iii) CMF, iv) CLP-GP.



The influence of sparseness on MovieLens dataset.

Multiple Domain User Personalization. Y.Low, D. Aggarwal, A. Smola.